login
A153377
Larger of two consecutive prime numbers such that p1*p2*d + d = average of twin prime pairs, d (delta) = p2 - p1.
15
7, 11, 43, 47, 103, 107, 127, 229, 337, 383, 571, 653, 739, 757, 877, 977, 1097, 1129, 1171, 1223, 1399, 1511, 2069, 2137, 2203, 2333, 2371, 2411, 2711, 2713, 3719, 4793, 4831, 5023, 5059, 5179, 5483, 5503, 6007, 6029, 6829, 6959, 6971, 7109, 7219, 7481
OFFSET
1,1
COMMENTS
See A153376 for the corresponding lesser prime.
LINKS
EXAMPLE
5*7*2 + 2 = 72 and 72 +- 1 are primes, so 7 is a term.
7*11*4 + 4 = 312 and 312 +- 1 are primes, so 11 is a term.
MATHEMATICA
lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; d=p2-p1; a=p1*p2*d+d; If[PrimeQ[a-1]&&PrimeQ[a+1], AppendTo[lst, p2]], {n, 7!}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved