

A227281


First primes of arithmetic progressions of 5 primes each with the common difference 30.


7



7, 11, 37, 107, 137, 151, 277, 359, 389, 401, 541, 557, 571, 877, 1033, 1493, 1663, 2221, 2251, 2879, 3271, 6269, 6673, 6703, 7457, 7487, 9431, 10103, 10133, 10567, 11981, 12457, 12973, 14723, 17047, 19387, 24061, 25643, 25673, 26861, 26891, 27337, 27367
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The minimal possible difference in an APk is conjectured to be k# for all k > 7.
For k = 5, we have d = 3# = 6 and there is ONLY one AP5 with this difference: {5, 11, 17, 23, 29}.


LINKS

Sameen Ahmed Khan, Table of n, a(n) for n = 1..1184


EXAMPLE

p = 11 then {11, 11 + 1*30, 11 + 2*30, 11 + 3*30, 11 + 4*30} = {11, 41, 71, 101, 131}, which is 5 primes in arithmetic progression with the difference 5# = 30.


MATHEMATICA

Clear[p]; d = 30; ap5p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d}] == {True, True, True, True, True}, AppendTo[ap5p, p]], {p, 3, 25000, 2}]; ap5p


CROSSREFS

Cf. A001359, A023241, A023271, A094220, A156204, A227282, A227283, A227284, A227285, A227286.
Sequence in context: A019416 A138122 A176955 * A268579 A129865 A153377
Adjacent sequences: A227278 A227279 A227280 * A227282 A227283 A227284


KEYWORD

nonn


AUTHOR

Sameen Ahmed Khan, Jul 05 2013


STATUS

approved



