login
A227286
First primes of arithmetic progressions of 13 primes each with the common difference 30030.
5
14933623, 2085471361, 132420258931, 185041386139, 682539280751, 834172298383, 834172328413, 856378247603, 856378277633, 888867525577, 931115864233, 1059709587163, 1345030977911, 1360910561113, 1578280523803, 1973348047529, 1988253536611, 2083502941613
OFFSET
1,1
COMMENTS
The minimal possible difference in an arithmetic progression of k primes is conjectured to be k# = A034386(k) for all k > 7. 13# = 30030.
EXAMPLE
p = 2085471361 then the AP-13 is {2085471361, 2085501391, 2085531421, 2085561451, 2085591481, 2085621511, 2085651541, 2085681571, 2085711601, 2085741631, 2085771661, 2085801691, 2085831721} with the difference 13# = 2*3*5*7*11*13 = 30030.
MATHEMATICA
Clear[p]; d = 30030; ap13p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d, p + 11*d, p + 12*d}] == {True, True, True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap13p, p]], {p, 3, 41*10^9, 2}]; ap13p
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Jul 05 2013
EXTENSIONS
More terms from Jens Kruse Andersen, Jun 27 2014
STATUS
approved