login
A153375
Larger of two consecutive prime numbers such that p0+p1=average of twin prime pairs and p0*p1+7=average of twin prime pairs.
16
7, 17, 1049, 2767, 3347, 22391, 45989, 88237, 92333, 135241, 154157, 233327, 287159, 344231, 365297, 392737, 479639, 549749, 574367, 650591, 659437, 666089, 749807, 786959, 869069, 959737, 1023541, 1045043, 1161851, 1180427, 1193041
OFFSET
1,1
COMMENTS
5+7=12+-1=primes, 5*7+7=42+-1=primes; 13+17=30+-1=primes, 13*17+7=228+-1=primes;...
LINKS
MATHEMATICA
lst={}; Do[p0=Prime[n]; p1=Prime[n+1]; a=p0+p1; b=p0*p1+7; If[PrimeQ[a-1]&&PrimeQ[a+1]&&PrimeQ[b-1]&&PrimeQ[b+1], AppendTo[lst, p1]], {n, 9!}]; lst
atpQ[{a_, b_}]:=Module[{t=a+b, p=a*b}, AllTrue[{t-1, t+1, p+6, p+8}, PrimeQ]]; Transpose[ Select[Partition[Prime[Range[100000]], 2, 1], atpQ]][[2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 09 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved