

A099349


Primes p such that p+nextprime(p) is the arithmetic mean of a pair of twin primes.


20



5, 7, 13, 19, 29, 67, 97, 113, 229, 293, 307, 401, 409, 439, 613, 643, 659, 709, 739, 809, 829, 859, 937, 1039, 1051, 1327, 1483, 1663, 1693, 1879, 1999, 2039, 2113, 2129, 2239, 2251, 2549, 2633, 2707, 2749, 2753, 2819, 3041, 3089, 3137, 3221, 3271, 3329
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence (obviously) uses the "strictly larger" variant 2 (A151800) of the nextprime() function, rather than A007918.  M. F. Hasler, Sep 09 2015


LINKS

Table of n, a(n) for n=1..48.


EXAMPLE

19+23=42 sum of consecutive primes and also arithmetic mean of twin primes 41 and 43.


MATHEMATICA

okQ[p_] := Module[{s = p + NextPrime[p]}, PrimeQ[s  1] && PrimeQ[s + 1]]; Select[Prime[Range[1000]], okQ] (* Zak Seidov, Apr 10 2011 *)


PROG

(MAGMA) [n: n in PrimesUpTo(3330)  IsPrime(n+NextPrime(n)1) and IsPrime(n+NextPrime(n)+1)]; // Bruno Berselli, Apr 10 2011
(PARI) is(n)=if(isprime(n), n+=nextprime(n+1); isprime(n1) && isprime(n+1), 0) \\ Charles R Greathouse IV, Jul 01 2013


CROSSREFS

Cf. A151800, A007918.
Sequence in context: A045443 A153116 A227420 * A167464 A280266 A243457
Adjacent sequences: A099346 A099347 A099348 * A099350 A099351 A099352


KEYWORD

nonn,easy


AUTHOR

Labos Elemer, Nov 17 2004


EXTENSIONS

Corrected and edited by Zak Seidov, Apr 10 2011


STATUS

approved



