This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153337 Number of zig-zag paths from top to bottom of a 2n-1 by 2n-1 square whose color is that of the top right corner 5
 1, 4, 24, 136, 720, 3624, 17584, 83024, 383904, 1746280, 7839216, 34812144, 153204064, 669108496, 2903267040, 12526343584, 53779871552, 229895033832, 978965187184, 4154438114480, 17575883030496, 74150192517808 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 1..1000 Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation FORMULA a(n) = n*2^(2n-2) - 2(n-1)*binomial(2n-2,n-1). EXAMPLE a(3) = 3 * 2 ^ (2*3 - 2) - 2* (3 - 1) * binomial(2*3 - 2, 3 - 1) = 24. - Indranil Ghosh, Feb 19 2017 MATHEMATICA Table[(n)2^(2n-2)-2(n-1) Binomial[2n-2, n-1], {n, 1, 22}] (* Indranil Ghosh, Feb 19 2017 *) PROG (Python) import math def C(n, r): ....f=math.factorial ....return f(n)/f(r)/f(n-r) def A153337(n): ....return str(n*2**(2*n-2)-2*(n-1)*C(2*n-2, n-1)) # Indranil Ghosh, Feb 19 2017 (PARI) a(n) = n*2^(2*n-2) - 2*(n-1)*binomial(2*n-2, n-1); \\ Michel Marcus, Feb 19 2017 CROSSREFS Cf. A102699, A153334, A153335, A153336, A153338. Sequence in context: A048180 A057391 A071079 * A122690 A183512 A204199 Adjacent sequences:  A153334 A153335 A153336 * A153338 A153339 A153340 KEYWORD easy,nonn AUTHOR Joseph Myers, Dec 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 19:39 EDT 2019. Contains 327279 sequences. (Running on oeis4.)