This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153338 Number of zig-zag paths from top to bottom of a 2n-1 by 2n-1 square whose color is not that of the top right corner. 7
 0, 2, 18, 116, 650, 3372, 16660, 79592, 371034, 1697660, 7654460, 34106712, 150499908, 658707896, 2863150440, 12371226064, 53178791162, 227561427612, 969890051884, 4119092850680, 17438036501676, 73611934643368, 309935825654168, 1301878616066736 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 1..1000 Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation FORMULA a(n) = n*2^(2*n-2) - (2*n-1)*binomial(2*n-2,n-1). 4^n*(n+1)-C(2*n,n)*(2*n+1) = Sum_{k=1..n} C(2*(n-k),n-k)*C(2*k,k)*k*(H(k)-H(n-k)) for n >= 0; H(n) denote the harmonic numbers. This identity is attributed to Maillard. - Peter Luschny, Sep 17 2015 EXAMPLE a(3) = 3*2 ^ (2*3 - 2) - (2*3 - 1) * binomial(2*3 - 2, 3 - 1) = 18. - Indranil Ghosh, Feb 19 2017 MATHEMATICA Table[n 2^(2 n - 2) - (2 n - 1) Binomial[2 n - 2, n - 1], {n, 22}] (* Michael De Vlieger, Sep 17 2015 *) PROG (MAGMA) [(n)*2^(2*n-2)-(2*n-1)*Binomial(2*n-2, n-1): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015 (Python) import math def C(n, r): ....f=math.factorial ....return f(n)/f(r)/f(n-r) def A153338(n): ....return str(n*2**(2*n-2)-(2*n-1)*C(2*n-2, n-1)) # Indranil Ghosh, Feb 19 2017 CROSSREFS Cf. A102699, A153334, A153335, A153336, A153337. Sequence in context: A064837 A224902 A027433 * A007798 A058052 A119578 Adjacent sequences:  A153335 A153336 A153337 * A153339 A153340 A153341 KEYWORD easy,nonn AUTHOR Joseph Myers, Dec 24 2008 EXTENSIONS a(23)-a(24) from Vincenzo Librandi, Sep 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 03:48 EDT 2019. Contains 326139 sequences. (Running on oeis4.)