login
A153273
Triangle read by rows: T(n,k) = Product_{i=0..k-2} (i*n + n - 1).
2
1, 2, 10, 3, 21, 231, 4, 36, 504, 9576, 5, 55, 935, 21505, 623645, 6, 78, 1560, 42120, 1432080, 58715280, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 9, 171, 4959, 193401, 9476649, 559122291, 38579438079, 3047775608241, 271252029133449
OFFSET
2,2
COMMENTS
Row sums are {1, 12, 255, 10120, 646145, 60191124, 7687739647, 1288641721680, 274338952977249, 72299818200530140, ...}.
A153187 without its diagonal. - R. J. Mathar, Sep 04 2016
EXAMPLE
Triangle begins as:
1;
2, 10;
3, 21, 231;
4, 36, 504, 9576;
5, 55, 935, 21505, 623645;
6, 78, 1560, 42120, 1432080, 58715280;
7, 105, 2415, 74865, 2919735, 137227545, 7547514975;
8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640;
MAPLE
A153273 := proc(n, m)
local i;
mul( n-1+i*n, i=0..m-2) ;
end proc:
seq(seq( A153273(n, m), m=2..n), n=2..12) ; # R. J. Mathar, Sep 04 2016
MATHEMATICA
Table[n^(k-1)*Pochhammer[(n-1)/n, k-1], {n, 2, 12}, {k, 2, n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
PROG
(PARI) T(n, k) = prod(j=0, k-2, j*n+n-1);
for(n=2, 12, for(k=2, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
(Magma) [(&*[j*n+n-1: j in [0..k-2]]): k in [2..n], n in [2..12]]; // G. C. Greubel, Mar 05 2020
(Sage) [[n^(k-1)*rising_factorial((n-1)/n, k-1) for k in (2..n)] for n in (2..12)] # G. C. Greubel, Mar 05 2020
(GAP) Flat(List([2..12], n-> List([2..n], k-> Product([0..k-2], j-> (j+1)*n-1) ))); # G. C. Greubel, Mar 05 2020
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Dec 22 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 05 2020
STATUS
approved