OFFSET
0,1
COMMENTS
Row sums are {5, 35, 355, 6645, 219425, 11640805, 917404295, 101177741765, 14919432040765, 2839006665525525, 677815000136926955, ...}.
LINKS
G. C. Greubel, Rows n = 0..100 of triangle, flattened
FORMULA
T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3.
EXAMPLE
Triangle begins as:
5;
5, 30;
5, 35, 315;
5, 40, 440, 6160;
5, 45, 585, 9945, 208845;
5, 50, 750, 15000, 375000, 11250000;
5, 55, 935, 21505, 623645, 21827575, 894930575;
MAPLE
m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
MATHEMATICA
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j, 0, k}]];
Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = my(m=3); if(k==0, prime(m), prod(j=0, k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
(Magma) m:=3;
function T(n, k)
if k eq 0 then return NthPrime(m);
else return (&*[j*n + NthPrime(m): j in [0..k]]);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
(Sage)
def T(n, k):
m=3
if (k==0): return nth_prime(m)
else: return product(j*n + nth_prime(m) for j in (0..k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
CROSSREFS
Sequences related to m values:
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 22 2008
EXTENSIONS
Edited by G. C. Greubel, Dec 03 2019
STATUS
approved