OFFSET
0,3
COMMENTS
Consider the Holladay-Ulam CA shown in Fig. 2 and Example 2 of the Ulam article. Then a(n) is the number of cells turned ON in generation n.
REFERENCES
S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
LINKS
David Applegate, The movie version
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
N. J. A. Sloane, Illustration of initial terms (annotated copy of figure on p. 222 of Ulam)
FORMULA
EXAMPLE
From Omar E. Pol, Apr 02 2018: (Start)
Note that this sequence also can be written as an irregular triangle read by rows in which the row lengths are the terms of A011782 multiplied by 3, as shown below:
0,1, 4;
4,4,12;
4,4,12,12,12,36;
4,4,12,12,12,36,12,12,36,36,36,108;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,324;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,... (End)
MAPLE
f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;
wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;
A151904 := proc(n) local k, j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
A151905 := proc (n) local k, j;
if (n=0) then 0;
elif (n=1) then 1;
elif (n=2) then 0;
else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;
end;
A151906 := proc(n);
if (n=0) then 0;
elif (n=1) then 1;
else 8*A151905(n) + 4;
fi;
end;
MATHEMATICA
wt[n_] := DigitCount[n, 2, 1];
f[n_] := {0, 0, 1, 1, 1, 2}[[Mod[n, 6] + 1]];
A151902[n_] := wt[Floor[n/6]] + f[n - 6 Floor[n/6]];
A151905[n_] := Module[{k, j}, Switch[n, 0, 0, 1, 1, 2, 0, _, k = Floor[Log2[n/3]]; j = n - 3*2^k; A151904[j]]];
a[n_] := Switch[n, 0, 0, 1, 1, _, 8 A151905[n] + 4];
Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 16 2023, after Maple code *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
David Applegate and N. J. A. Sloane, Jul 31 2009, Aug 03 2009
STATUS
approved