login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151904 a(n) = (3^(wt(k)+f(j))-1)/2 if n = 6k+j, 0 <= j < 6, where wt = A000120, f = A151899. 6
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..82.

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

FORMULA

a(n) = (3^A151902(n)-1)/2.

MAPLE

f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;

wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;

A151904 := proc(n) local k, j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;

PROG

(PARI) a(n)=(3^(hammingweight(n\6)+[0, 0, 1, 1, 1, 2][n%6+1])-1)/2 \\ Charles R Greathouse IV, Sep 26 2015

CROSSREFS

Cf, A151899, A151902, A151905-A151907.

Sequence in context: A183374 A176263 A110812 * A222360 A222371 A222479

Adjacent sequences:  A151901 A151902 A151903 * A151905 A151906 A151907

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jul 31 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 15:53 EST 2019. Contains 319307 sequences. (Running on oeis4.)