login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151905 a(0) = a(2) = 0, a(1) = 1; for n >= 3, n = 3*2^k+j, 0 <= j < 3*2^k, a(n) = A151904(j). 5
0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 4, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Consider the Holladay-Ulam CA shown in Fig. 2 and Example 2 of the Ulam article. Then a(n) is the number of cells turned ON in generation n in a 45 degree sector that are not on the main stem.

REFERENCES

S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.

LINKS

Table of n, a(n) for n=0..90.

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

N. J. A. Sloane, Illustration of initial terms (annotated copy of figure on p. 222 of Ulam)

EXAMPLE

If written as a triangle:

0,

1, 0,

0, 0, 1,

0, 0, 1, 1, 1, 4,

0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13,

0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40

0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121,

...

then the rows converge to A151904.

MAPLE

f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;

wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;

A151904 := proc(n) local k, j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;

A151905 := proc (n) local k, j;

if (n=0) then 0;

elif (n=1) then 1;

elif (n=2) then 0;

else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;

end;

CROSSREFS

Cf. A151904, A151906, A151907, A139250, A151895, A151896.

Sequence in context: A200627 A152889 A216273 * A226997 A245965 A078669

Adjacent sequences:  A151902 A151903 A151904 * A151906 A151907 A151908

KEYWORD

nonn,tabf

AUTHOR

N. J. A. Sloane, Jul 31 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 2 15:16 EDT 2014. Contains 246361 sequences.