This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151905 a(0) = a(2) = 0, a(1) = 1; for n >= 3, n = 3*2^k+j, 0 <= j < 3*2^k, a(n) = A151904(j). 6
 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 4, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS Consider the Holladay-Ulam CA shown in Fig. 2 and Example 2 of the Ulam article. Then a(n) is the number of cells turned ON in generation n in a 45 degree sector that are not on the main stem. REFERENCES S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962. LINKS David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS N. J. A. Sloane, Illustration of initial terms (annotated copy of figure on p. 222 of Ulam) EXAMPLE If written as a triangle: 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 4, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121, ... then the rows converge to A151904. MAPLE f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end; wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end; A151904 := proc(n) local k, j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end; A151905 := proc (n) local k, j; if (n=0) then 0; elif (n=1) then 1; elif (n=2) then 0; else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi; end; CROSSREFS Cf. A151904, A151906, A151907, A139250, A151895, A151896. Sequence in context: A200627 A152889 A216273 * A226997 A245965 A078669 Adjacent sequences:  A151902 A151903 A151904 * A151906 A151907 A151908 KEYWORD nonn,tabf AUTHOR N. J. A. Sloane, Jul 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 05:27 EDT 2018. Contains 313810 sequences. (Running on oeis4.)