login
A147615
a(n) = 13 + Sum_{j=4..n+3} j!.
2
13, 37, 157, 877, 5917, 46237, 409117, 4037917, 43954717, 522956317, 6749977117, 93928268317, 1401602636317, 22324392524317, 378011820620317, 6780385526348317, 128425485935180317, 2561327494111820317, 53652269665821260317, 1177652997443428940317
OFFSET
0,1
COMMENTS
Are there infinitely many terms in the intersection of this sequence and A036570?
Answer from Don Reble, Mar 25 2016: No, after the ninth term, all terms are multiples of 13.
LINKS
FORMULA
a(n) = 13 + !(n+4) - !4 = 13 + A003422(n+4) - A003422(4). - G. C. Greubel, Oct 24 2022
EXAMPLE
a(0) = 13, a(1) = 13 + 4!, a(2) = 13 + 4! + 5!, ....
MATHEMATICA
A147615[n_]:= 13 +Sum[j!, {j, 4, n+3}]; Table[A147615[n], {n, 0, 30}] (* G. C. Greubel, Oct 24 2022 *)
PROG
(Magma) [n eq 0 select 13 else 13 + (&+[Factorial(j+4): j in [0..n-1]]): n in [0..30]]; // G. C. Greubel, Oct 24 2022
(SageMath)
def A147615(n): return 13 + sum(factorial(j+4) for j in range(n))
[A147615(n) for n in range(30)] # G. C. Greubel, Oct 24 2022
CROSSREFS
Sequence in context: A139860 A201480 A036570 * A371512 A298683 A173872
KEYWORD
nonn
AUTHOR
Ricky Pollack (rickypollack(AT)gmail.com), Apr 30 2009
STATUS
approved