login
A036570
Primes p such that (p+1)/2 and (p+2)/3 are also primes.
9
13, 37, 157, 541, 877, 1201, 1381, 1621, 2017, 2557, 2857, 3061, 4357, 4441, 5077, 5581, 5701, 6337, 6637, 6661, 6997, 7417, 8221, 9181, 9661, 9901, 10837, 11497, 12457, 12601, 12721, 12757, 13681, 14437, 15241, 16921, 17077, 18217
OFFSET
1,1
COMMENTS
The prime p is followed by two semiprimes; a third semiprime is not possible. - T. D. Noe, Jul 23 2008
A subsequence of A005383, which has A163573 as a subsequence. - M. F. Hasler, Feb 26 2012
Similarly, the only "prime sandwiched by semiprimes" is 5. - Zak Seidov, Aug 04 2013
For n > 1, a(n) == 1 or (7 mod 10). If a(n) == 3 (mod 10), then (a(n) + 2)/3 == 0 (mod 5) which is a composite number if a(n) > 13. - Chai Wah Wu, Nov 30 2016
All terms are congruent to 1 (mod 12). - Zak Seidov, Feb 16 2017
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[(p+1)/2]&&PrimeQ[(p+2)/3], AppendTo[lst, p]], {n, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 31 2009 *)
PROG
(PARI) is_A036570(n)={ !(n%3-1) & isprime(n\3+1) & isprime(n\2+1) & isprime(n) }
for(n=1, 2e4, is_A036570(n) & print1(n", ")) \\ M. F. Hasler, Feb 26 2012
CROSSREFS
A278583 is an equivalent sequence.
See also A278585.
Sequence in context: A155903 A139860 A201480 * A147615 A371512 A298683
KEYWORD
nonn
STATUS
approved