login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147542 Product(1 + a(n)*x^n, n=1..infinity) = sum(F(k+1)*x^k, k=1..infinity) = 1/(1-x-x^2), where F(n) = A000045(n) (Fibonacci numbers). 8
1, 2, 1, 4, 2, 1, 4, 18, 8, 8, 18, 17, 40, 50, 88, 396, 210, 296, 492, 690, 1144, 1776, 2786, 3545, 6704, 10610, 16096, 25524, 39650, 63544, 97108, 269154, 236880, 389400, 589298, 956000, 1459960, 2393538, 3604880, 5739132, 9030450, 14777200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A formal infinite product representation for the Fibonacci numbers (A000045(n+1)).

For references see A147541. [From R. J. Mathar, Mar 12 2009]

LINKS

Jean-François Alcover, Table of n, a(n) for n = 1..200

W. Lang Two recurrences for the general problem.

R. J. Mathar, Re: polynomial-to-product transform, Maple code (2008). [From R. J. Mathar, Mar 12 2009]

FORMULA

Comments from Wolfdieter Lang, Mar 06 2009 (Start): Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions (fp)):

a(n)= F(n+1) - sum(sum(product(a(k[j]),j=1..m),fp from FP(n,m)),m=2..maxm(n)), with maxm(n):=A003056(n) and the distinct parts k[j], j=1,...,m, of the partition fp of n, n>=3. Inputs a(1)=F(2)=1, a(2)=F(3)=2. See the array A008289(n,m) for the cardinality of the set FP(n,m).

Recurrence II: With the definition of FP(n,m) from the above recurrence I, P(n,m) the general set of partitions of n with m parts, and the multinomial numbers M_0 (given for every partition under A048996):

a(n) = sum((d/n)*(-a(d)^(n/d)),d|n with 1<d<n) + sum(((-1)^(m-1))*(1/m)*sum(M_0(p)*F(2)^e(1)*...*F(n+1)^e(n),p=(1^e(1),...,n^e(n)) from P(n,m)),m=1..n-1), n>=2; a(1)=F(2)=1. The exponents e(j)>=0 satisfy sum(j*e(j),j=1..n)=n and sum(e(j),j=1..m). The M_0 numbers are m!/product(e(j)!,j=1..n).

Example of recurrence I: a(4) = F(5) - a(1)*a(3) = 5 - 1*1 = 4.

Example of recurrence II: a(4)= 2*(-1)^2 + (1*F(5)-(1/2)*(2*F(2)*F(4) + 1*F(3)^2) + (1/3)*3*F(2)^2*F(3)) = 4. (End)

MATHEMATICA

m = 200;

sol = Thread[CoefficientList[Sum[Log[1 + a[n] x^n], {n, 1, m}] - Log[1/(1 - x - x^2)] + O[x]^(m + 1), x] == 0] // Solve // First;

Array[a, m] /. sol (* Jean-François Alcover, Oct 22 2019 *)

CROSSREFS

Cf. A000045, A137852, A006973, A157159.

Sequence in context: A278290 A135152 A329504 * A325309 A211956 A128177

Adjacent sequences:  A147539 A147540 A147541 * A147543 A147544 A147545

KEYWORD

nonn

AUTHOR

Neil Fernandez, Nov 06 2008

EXTENSIONS

More terms and revised description from Wolfdieter Lang Mar 06 2009

Edited by N. J. A. Sloane, Mar 11 2009 at the suggestion of Vladeta Jovovic

More terms from R. J. Mathar, Mar 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 15:48 EDT 2020. Contains 337169 sequences. (Running on oeis4.)