The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147540 Numbers whose binary representation is the concatenation of 2n-1 digits 1, n digits 0 and 2n-1 digits 1. 5
 5, 231, 7967, 260223, 8372735, 268306431, 8588894207, 274869551103, 8796026044415, 281474440364031, 9007194961870847, 288230341800361983, 9223371762010423295, 295147902980463788031, 9444732948147641253887 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the number whose binary representation is A138826(n). LINKS G. C. Greubel, Table of n, a(n) for n = 1..660 FORMULA From R. J. Mathar, Nov 09 2008: (Start) a(n) = 2^(5*n-2) - 2^(3*n-1) + 2^(2*n-1) - 1. G.f.: x*(5 +6*x -128*x^2 +768*x^3)/((1-x)*(1-4*x)*(1-8*x)*(1-32*x)). (End) MAPLE seq( 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1, n=1..20); # G. C. Greubel, Jan 12 2020 MATHEMATICA Table[FromDigits[Join[Table[1, {2n-1}], Table[0, {n}], Table[1, {2n-1}]], 2], {n, 15}] (* Stefan Steinerberger, Nov 11 2008 *) PROG (PARI) vector(20, n, 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1) \\ G. C. Greubel, Jan 12 2020 (MAGMA) [2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1: n in [1..20]]; // G. C. Greubel, Jan 12 2020 (Sage) [2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1 for n in (1..20)] # G. C. Greubel, Jan 12 2020 (GAP) List([1..20], n-> 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1); # G. C. Greubel, Jan 12 2020 CROSSREFS Cf. A138826. Sequence in context: A103732 A065757 A157776 * A187366 A176898 A274996 Adjacent sequences:  A147537 A147538 A147539 * A147541 A147542 A147543 KEYWORD base,easy,nonn AUTHOR Omar E. Pol, Nov 06 2008 EXTENSIONS More terms from R. J. Mathar and Stefan Steinerberger, Nov 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 00:54 EDT 2020. Contains 337440 sequences. (Running on oeis4.)