login
A278290
Number of neighbors of each new term in a square array read by antidiagonals.
4
0, 1, 2, 1, 4, 2, 1, 4, 4, 2, 1, 4, 4, 4, 2, 1, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2
OFFSET
1,3
COMMENTS
Here the "neighbors" of T(n,k) are defined to be the adjacent elements to T(n,k), in the same row, column or diagonals, that are present in the square array when T(n,k) is the new element of the sequence in progress.
Apart from row 1 and column 1 the rest of the elements are 4's.
If every "4" is replaced with a "3" we have the sequence A275015.
For the same idea but for a right triangle see A278317; for an isosceles triangle see A275015; for a square spiral see A278354; and for a hexagonal spiral see A047931.
EXAMPLE
The corner of the square array read by antidiagonals upwards begins:
0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...
1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,...
1, 4, 4, 4, 4, 4, 4, 4, 4, 4,...
1, 4, 4, 4, 4, 4, 4, 4, 4,...
1, 4, 4, 4, 4, 4, 4, 4,...
1, 4, 4, 4, 4, 4, 4,...
1, 4, 4, 4, 4, 4,...
1, 4, 4, 4, 4,...
1, 4, 4, 4,...
1, 4, 4,...
1, 4,...
1,...
..
MATHEMATICA
Table[Boole[# > 1] + 2 Boole[k > 1] + Boole[And[# > 1, k > 1]] &[n - k + 1], {n, 14}, {k, n}] // Flatten (* or *)
Table[Boole[n > 1] (Map[Mod[#, n] &, Range@ n] /. {k_ /; k > 1 -> 4, 0 -> 2}), {n, 14}] // Flatten (* Michael De Vlieger, Nov 23 2016 *)
CROSSREFS
Antidiagonal sums give 0 together with A004767.
Row 1 gives 0 together with A007395, also twice A057427.
Column 1 gives A057427.
Sequence in context: A346702 A304624 A083653 * A135152 A329504 A147542
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Nov 16 2016
STATUS
approved