

A145962


Decimal expansion of 1/5 Hypergeometric2F1[1, 5/8, 13/8, 1/16] = 0.205... used by BBP Pi formula


4



2, 0, 5, 0, 0, 2, 5, 5, 7, 6, 3, 6, 4, 2, 3, 5, 3, 3, 9, 4, 4, 1, 5, 0, 3, 3, 6, 2, 1, 8, 4, 9, 2, 2, 6, 6, 9, 0, 6, 1, 6, 5, 2, 4, 2, 7, 1, 2, 1, 4, 9, 4, 3, 9, 6, 0, 0, 0, 1, 8, 5, 0, 6, 3, 4, 7, 8, 0, 9, 8, 9, 5, 8, 6, 1, 2, 0, 9, 3, 0, 1, 4, 5, 4, 5, 0, 7, 6, 4, 1, 6, 9, 2, 8, 2, 2, 9, 0, 3, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

A145962 = 1/5 Hypergeometric2F1[1, 5/8, 13/8, 1/16] =
Sum[(1/16)^n (1/(8n+5)),{n,0,Infinity}] =
(*Artur Jasinski*) Sqrt[2](ArcCot[Sqrt[2]] + ArcCoth[Sqrt[2]]) Pi/4  ArcCot[3]  Log[5]/2
BBP Formula on Pi = 4*A145963(1/2)A145960(1/2)A145961A145962 =
(*Artur Jasinski*) =4((1/16) (Pi + 4 ArcTan[1/3] + 4 Sqrt[2] ArcTan[1/Sqrt[2]] + Log[25]  2 Sqrt[2] Log[2  Sqrt[2]] + 2 Sqrt[2] Log[2 + Sqrt[2]]))
(Sqrt[2] ArcCot[Sqrt[2]] + Sqrt[2] ArcCoth[Sqrt[2]]  Log[5]/2  Pi/4  ArcCot[3])
(1/2)(2*Log[5/3])
(1/2)(2*Log[3]2 ArcTan[1/2]) =
Pi = 3.1414... = A000796


LINKS

Table of n, a(n) for n=0..99.
Weisstein, Eric W., BBP Formula


MATHEMATICA

k = First[RealDigits[1/5 Hypergeometric2F1[1, 5/8, 13/8, 1/16], 10, 100]]; Prepend[k, 0]


CROSSREFS

A000796, A145960, A145961, A145963
Sequence in context: A055978 A245695 A069025 * A066442 A171388 A086134
Adjacent sequences: A145959 A145960 A145961 * A145963 A145964 A145965


KEYWORD

cons,nonn


AUTHOR

Artur Jasinski, Oct 25 2008


EXTENSIONS

Removed leading zero, adjusted offset  R. J. Mathar, Feb 05 2009


STATUS

approved



