This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145961 Decimal expansion of 2Log[3] - 4ArcCot[2] = 0.342634... used by BBP Pi formula 4
 3, 4, 2, 6, 3, 4, 1, 4, 1, 3, 3, 2, 9, 9, 4, 9, 1, 7, 9, 3, 3, 4, 6, 5, 5, 4, 8, 0, 0, 0, 1, 9, 3, 8, 0, 1, 1, 8, 0, 8, 3, 2, 8, 9, 8, 5, 0, 1, 0, 1, 7, 8, 4, 8, 2, 2, 5, 6, 5, 6, 3, 1, 2, 3, 9, 4, 1, 9, 7, 1, 2, 9, 7, 7, 4, 2, 5, 1, 1, 1, 2, 5, 4, 4, 8, 3, 0, 3, 7, 3, 6, 8, 7, 9, 1, 2, 6, 0, 7, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A145961 = 2Log[3] - 4ArcCot[2] = 1/3 Hypergeometric2F1[1, 3/4, 7/4, 1/16] = Sum[(1/16)^n (1/(4n+3)),{n,0,Infinity}] BBP Formula on Pi = 4*A145963-(1/2)A145960-(1/2)A145961-A145962 = (*Artur Jasinski*) =4((1/16) (Pi + 4 ArcTan[1/3] + 4 Sqrt[2] ArcTan[1/Sqrt[2]] + Log[25] - 2 Sqrt[2] Log[2 - Sqrt[2]] + 2 Sqrt[2] Log[2 + Sqrt[2]]))- (Sqrt[2] ArcCot[Sqrt[2]] + Sqrt[2] ArcCoth[Sqrt[2]] - Log[5]/2 - Pi/4 - ArcCot[3])- (1/2)(2*Log[5/3])- (1/2)(2*Log[3]-2 ArcTan[1/2]) = Pi = 3.1414... = A000796 LINKS Weisstein, Eric W., BBP Formula. MATHEMATICA k=First[RealDigits[2Log[3] - 4ArcCot[2], 10, 100]]; Prepend[k, 0] CROSSREFS Sequence in context: A133620 A322965 A154570 * A082928 A139524 A247413 Adjacent sequences:  A145958 A145959 A145960 * A145962 A145963 A145964 KEYWORD cons,nonn AUTHOR Artur Jasinski, Oct 25 2008 EXTENSIONS Removed leading zero, adjusted offset R. J. Mathar, Feb 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 16:12 EDT 2019. Contains 327078 sequences. (Running on oeis4.)