This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145963 Decimal expansion of Hypergeometric2F1[1, 1/8, 9/8, 1/16] = 1.00718... used by BBP Pi formula 4
 1, 0, 0, 7, 1, 8, 4, 4, 7, 6, 4, 1, 4, 6, 7, 6, 2, 2, 8, 6, 4, 4, 7, 6, 0, 1, 4, 7, 4, 5, 0, 4, 3, 8, 4, 9, 6, 6, 4, 2, 9, 6, 5, 4, 7, 1, 9, 4, 5, 8, 8, 3, 1, 1, 3, 7, 1, 6, 4, 3, 6, 2, 0, 3, 1, 7, 2, 3, 5, 2, 3, 9, 0, 3, 8, 0, 8, 9, 8, 1, 6, 3, 5, 2, 7, 8, 6, 8, 9, 4, 4, 2, 8, 9, 5, 8, 5, 9, 4, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS A145963 = Hypergeometric2F1[1, 1/8, 9/8, 1/16] = Sum[(1/16)^n (1/(8n+1)),{n,0,Infinity}] = (*Artur Jasinski*) (1/16) (Pi + 2 Sqrt[2] (2 ArcCoth[Sqrt[2]] + ArcTan[2 Sqrt[2]]) + 2 ArcTan[3/4] + 2 Log[5]) BBP Formula on Pi = 4*A145963-(1/2)A145960-(1/2)A145961-A145962 = (*Artur Jasinski*) =4((1/16) (Pi + 4 ArcTan[1/3] + 4 Sqrt[2] ArcTan[1/Sqrt[2]] + Log[25] - 2 Sqrt[2] Log[2 - Sqrt[2]] + 2 Sqrt[2] Log[2 + Sqrt[2]]))- (Sqrt[2] ArcCot[Sqrt[2]] + Sqrt[2] ArcCoth[Sqrt[2]] - Log[5]/2 - Pi/4 - ArcCot[3])- (1/2)(2*Log[5/3])- (1/2)(2*Log[3]-2 ArcTan[1/2]) = Pi = 3.1414... = A000796 LINKS Weisstein, Eric W., BBP Formula. MATHEMATICA First[RealDigits[Hypergeometric2F1[1, 1/8, 9/8, 1/16], 10, 100] CROSSREFS Sequence in context: A021586 A091131 A249279 * A199439 A153625 A011100 Adjacent sequences:  A145960 A145961 A145962 * A145964 A145965 A145966 KEYWORD cons,nonn AUTHOR Artur Jasinski, Oct 25 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 23:59 EDT 2019. Contains 327207 sequences. (Running on oeis4.)