This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145518 Triangle read by rows: T1[n,k;x] := sum_{partitions with k parts p(n, k; m_1, m_2, m_3, ..., m_n)} x_1^m_1 * x_2^m_2 * ... x^n*m_n, for x_i = A000040(i). 5
 2, 3, 4, 5, 6, 8, 7, 19, 12, 16, 11, 29, 38, 24, 32, 13, 68, 85, 76, 48, 64, 17, 94, 181, 170, 152, 96, 128, 19, 177, 326, 443, 340, 304, 192, 256, 23, 231, 683, 787, 886, 680, 608, 384, 512, 29, 400, 1066, 1780, 1817, 1772, 1360, 1216, 768, 1024, 31, 484, 1899, 3119 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let p(n; m_1, m_2, m_3, ..., m_n) denote a partition of integer n in exponential representation, i.e. the m_i are the counts of parts i and satisfy 1*m_1 + 2*m_2 + 3*m_3 + ... + n*m_n = n. Let p(n, k; m_1, m_2, m_3, ..., m_n) be the partitions of n into exactly k parts; these are further constrained by m_1 + m_2 + m_3 + ... + m_n = k. Then the triangle is given by T1[n,k;x] := sum_{all p(n, k; m_1, m_2, m_3, ..., m_n)} x_1^m_1 * x_2^m_2 * ... x^n*m_n, where x_i is the i-th prime number (A000040). 2nd column (4,6,19,29,68,94,177, ...) is A024697. Row sums give A145519. LINKS Alois P. Heinz, Rows n = 1..141, flattened Tilman Neumann, More terms, partition generator and transform implementation. EXAMPLE Triangle starts: 2; 3,    4; 5,    6,   8; 7,   19,  12,  16; 11,  29,  38,  24,  32; 13,  68,  85,  76,  48,  64; MAPLE g:= proc(n, i) option remember; `if`(n=0 or i=1, (2*x)^n,       expand(add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..n/i)))     end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n\$2)): seq(T(n), n=1..12);  # Alois P. Heinz, May 25 2015 MATHEMATICA g[n_, i_] := g[n, i] = If[n==0 || i==1, (2 x)^n, Expand[Sum[g[n-i*j, i-1]*(Prime[i]*x)^j, {j, 0, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][g[n, n]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *) CROSSREFS Cf. A000040, A024697, A145519, A145520, A258323. Sequence in context: A232895 A274607 A262374 * A256221 A210253 A130916 Adjacent sequences:  A145515 A145516 A145517 * A145519 A145520 A145521 KEYWORD nonn,tabl AUTHOR Tilman Neumann, Oct 12 2008 EXTENSIONS Changed reference to more terms etc. to make it version independent Tilman Neumann, Sep 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.