This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299440 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, if prime(k) divides a(n) then k divides a(n+1) (where prime(k) denotes the k-th prime). 1
 1, 2, 3, 4, 5, 6, 8, 7, 12, 10, 9, 14, 16, 11, 15, 18, 20, 21, 24, 22, 25, 27, 26, 30, 36, 28, 32, 13, 42, 40, 33, 50, 39, 48, 34, 35, 60, 54, 38, 56, 44, 45, 66, 70, 72, 46, 63, 52, 78, 84, 64, 17, 49, 68, 77, 80, 51, 98, 76, 88, 55, 75, 90, 96, 58, 100, 57 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In other words, for any n > 0, A290103(a(n)) divides a(n+1). See also A299441 (where we consider only least prime factors) and A299442 (where we consider only greatest prime factors). LINKS Rémy Sigrist, Table of n, a(n) for n = 1..10000 Rémy Sigrist, PARI program for A299440 EXAMPLE The first terms, alongside A290103(a(n)), are:   n     a(n)  A290103(a(n))   --    ----  -------------    1       1      1    2       2      1    3       3      2    4       4      1    5       5      3    6       6      2    7       8      1    8       7      4    9      12      2   10      10      3   11       9      2   12      14      4   13      16      1   14      11      5   15      15      6   16      18      2   17      20      3   18      21      4   19      24      2   20      22      5 PROG (PARI) See Links section. CROSSREFS Cf. A290103, A299441, A299442. Sequence in context: A274607 A262374 A299442 * A145518 A256221 A210253 Adjacent sequences:  A299437 A299438 A299439 * A299441 A299442 A299443 KEYWORD nonn AUTHOR Rémy Sigrist, Feb 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 04:22 EST 2018. Contains 317333 sequences. (Running on oeis4.)