This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145519 a(n) = Sum_{k=1..n} A145518(n,k). 7
 1, 2, 7, 19, 54, 134, 354, 838, 2057, 4794, 11232, 25412, 58075, 128670, 286152, 625829, 1365653, 2941088, 6331146, 13474533, 28642325, 60404681, 127082128, 265712673, 554608226, 1151374963, 2385950536, 4924685252, 10145267212, 20831428273, 42708248451 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of A145518. Also row sums of A215366. a(n) = sum of the Heinz numbers of the partitions of n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the 3 partitions of 3, namely [3], [1,2], and [1,1,1] we get 5, 2*3=6, and 2*2*2=8, respectively; their sum is a(3) = 19. - Emeric Deutsch, Jun 09 2015 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 More terms in A145518 and A145519 FORMULA G.f.: 1/Product_{i>=1}(1-prime(i)*x^i). - Vladeta Jovovic, Nov 09 2008 a(n) ~ c * 2^n, where c = 50.412394245500690832088704444961002125578414895935257436317... . - Vaclav Kotesovec, Sep 10 2014 MAPLE b:= proc(n, i) option remember; `if`(n=0 or i<2, 2^n,       add(b(n-i*j, i-1)*ithprime(i)^j, j=0..iquo(n, i)))     end: a:= n-> b(n, n): seq(a(n), n=0..35);  # Alois P. Heinz, Feb 19 2013 MATHEMATICA b[n_, i_] := b[n, i] = If[n == 0 || i < 2, 2^n, Sum[b[n-i*j, i-1]*Prime[i]^j, {j, 0, Quotient[n, i]}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *) CROSSREFS Cf. A145518, A215366. Sequence in context: A051354 A073799 A040016 * A030224 A114624 A091024 Adjacent sequences:  A145516 A145517 A145518 * A145520 A145521 A145522 KEYWORD nonn AUTHOR Tilman Neumann, Oct 12 2008 EXTENSIONS a(0) inserted by Alois P. Heinz, Feb 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 16:15 EST 2018. Contains 318150 sequences. (Running on oeis4.)