This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299442 Lexicographically earliest sequence of distinct positive terms such that, for any n > 1, if prime(k) is the greatest prime factor of a(n) then k divides a(n+1) (where prime(k) denotes the k-th prime). 3
 1, 2, 3, 4, 5, 6, 8, 7, 12, 10, 9, 14, 16, 11, 15, 18, 20, 21, 24, 22, 25, 27, 26, 30, 33, 35, 28, 32, 13, 36, 34, 42, 40, 39, 48, 38, 56, 44, 45, 51, 49, 52, 54, 46, 63, 60, 57, 64, 17, 70, 68, 77, 50, 66, 55, 65, 72, 58, 80, 69, 81, 62, 88, 75, 78, 84, 76 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In other words, for any n > 1, A061395(a(n)) divides a(n+1). See also A299441 for the variant involving least prime factors. LINKS Rémy Sigrist, Table of n, a(n) for n = 1..10000 Rémy Sigrist, PARI program for A299442 Rémy Sigrist, Colored scatterplot of the first 100000 terms (where the color is function of A006530(a(n-1))) EXAMPLE The first terms, alongside A061395(a(n)), are:   n     a(n)    A061395(a(n))   --    ----    -------------    1       1       0    2       2       1    3       3       2    4       4       1    5       5       3    6       6       2    7       8       1    8       7       4    9      12       2   10      10       3   11       9       2   12      14       4   13      16       1   14      11       5   15      15       3   16      18       2   17      20       3   18      21       4   19      24       2   20      22       5 MAPLE N:= 1000: # to get terms before the first term > N with(numtheory): V:= Vector(N): A[1]:= 1: A[2]:= 2: V[1]:= 1: V[2]:= 1: found:= true: for n from 2 while found do      found:= false;      k:= pi(max(factorset(A[n])));      for v from k to N by k do        if V[v] = 0 then          V[v]:= 1;          A[n+1]:= v;          found:= true;          break        fi      od od: seq(A[i], i=1..n-1); # Robert Israel, Feb 18 2018 MATHEMATICA max = 100; Clear[a, V]; a[_] = 0; V[_] = 0; a[1] = 1; a[2] = 2; V[1] = 1; V[2] = 1; found = True; For[n = 2, found, n++, found = False; k = PrimePi[ FactorInteger[a[n]][[-1, 1]]]; For[v = k, v <= max, v += k, If[V[v] == 0, V[v] = 1; a[n+1] = v; found = True; Break[]]]]; DeleteCases[ Array[a, max], 0] (* Jean-François Alcover, Feb 23 2018, after Robert Israel *) PROG (PARI) See Links section. CROSSREFS Cf. A006530, A061395, A299441. Sequence in context: A232895 A274607 A262374 * A299440 A145518 A256221 Adjacent sequences:  A299439 A299440 A299441 * A299443 A299444 A299445 KEYWORD nonn AUTHOR Rémy Sigrist, Feb 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 04:39 EST 2018. Contains 317333 sequences. (Running on oeis4.)