login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145180 Continued cotangent recurrence a(n+1) = a(n)^3 + 3*a(n) and a(1) = 6. 11
6, 234, 12813606, 2103846732371087589834, 9311985549495522884757461748592522243432897275494229148348315206 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

General formula for continued cotangent recurrences type:

a(n+1) = a(n)3 + 3*a(n) and a(1)=k is following:

a(n) = Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))].

The next term (a(6)) has 192 digits. - Harvey P. Dale, Mar 09 2013

LINKS

Table of n, a(n) for n=1..5.

J. Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.

Eric W. Weisstein, MathWorld: Lehmer Cotangent Expansion

FORMULA

a(n+1)=a(n)^3 + 3*a(n) and a(1)=6

a(n)=Floor[((6+Sqrt[6^2+4])/2)^(3^(n-1))]

a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. See A002813. - Peter Bala, Nov 23 2012

MATHEMATICA

a = {}; k = 6; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a

or

Table[Floor[((6 + Sqrt[40])/2)^(3^(n - 1))], {n, 1, 5}] (* Artur Jasinski *)

NestList[#^3+3#&, 6, 5] (* Harvey P. Dale, Mar 09 2013 *)

CROSSREFS

Cf. A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 (k = 1 to 15 with k=4 being A006267(n+1)).

Cf. A002813.

Sequence in context: A221926 A194482 A266657 * A256275 A235346 A077231

Adjacent sequences:  A145177 A145178 A145179 * A145181 A145182 A145183

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Oct 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 16:31 EDT 2017. Contains 284137 sequences.