This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145180 Continued cotangent recurrence a(n+1) = a(n)^3 + 3*a(n) and a(1) = 6. 11
 6, 234, 12813606, 2103846732371087589834, 9311985549495522884757461748592522243432897275494229148348315206 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS General formula for continued cotangent recurrences type: a(n+1) = a(n)3 + 3*a(n) and a(1)=k is following: a(n) = Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]. The next term (a(6)) has 192 digits. - Harvey P. Dale, Mar 09 2013 LINKS J. Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290. Eric W. Weisstein, MathWorld: Lehmer Cotangent Expansion FORMULA a(n+1)=a(n)^3 + 3*a(n) and a(1)=6 a(n)=Floor[((6+Sqrt[6^2+4])/2)^(3^(n-1))] a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. See A002813. - Peter Bala, Nov 23 2012 MATHEMATICA a = {}; k = 6; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a or Table[Floor[((6 + Sqrt[40])/2)^(3^(n - 1))], {n, 1, 5}] (* Artur Jasinski *) NestList[#^3+3#&, 6, 5] (* Harvey P. Dale, Mar 09 2013 *) CROSSREFS Cf. A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 (k = 1 to 15 with k=4 being A006267(n+1)). Cf. A002813. Sequence in context: A194482 A309330 A266657 * A256275 A235346 A077231 Adjacent sequences:  A145177 A145178 A145179 * A145181 A145182 A145183 KEYWORD nonn,easy AUTHOR Artur Jasinski, Oct 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 12:11 EDT 2019. Contains 328110 sequences. (Running on oeis4.)