login
A145151
9th column of A145142.
1
1, 45, 1320, 32670, 766623, 17990973, 431474615, 10643661600, 271155254513, 7162999744329, 196798229724018, 5629113506142750, 167609902621721416, 5193256923854366136, 167378142642521719832, 5608242214782541676496
OFFSET
10,2
MAPLE
row:= proc(n) option remember; local f, i, x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 9) *(n-1)!): seq (a(n), n=10..26);
MATHEMATICA
row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[10]]*(n-1)!; Table[a[n], {n, 10, 26}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Cf. A145153.
Sequence in context: A330389 A346324 A243570 * A027476 A062262 A137716
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved