login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145154 Coefficients in expansion of Eisenstein series E_1. 3
1, 4, 8, 8, 12, 8, 16, 8, 16, 12, 16, 8, 24, 8, 16, 16, 20, 8, 24, 8, 24, 16, 16, 8, 32, 12, 16, 16, 24, 8, 32, 8, 24, 16, 16, 16, 36, 8, 16, 16, 32, 8, 32, 8, 24, 24, 16, 8, 40, 12, 24, 16, 24, 8, 32, 16, 32, 16, 16, 8, 48 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10000

M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998

FORMULA

a(0) = 1; for n >= 1, a(n) = 4*A000005(n). [After the PARI-program of Michael Somos.] - Antti Karttunen, May 25 2017

EXAMPLE

1 + 4*q + 8*q^2 + 8*q^3 + 12*q^4 + 8*q^5 + 16*q^6 + 8*q^7 + 16*q^8 + ...

MAPLE

with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60), q, 61); end; E(1);

MATHEMATICA

terms = 61; CoefficientList[1+4*Sum[x^k/(1-x^k), {k, 1, terms}]+O[x]^terms, x] (* Jean-Fran├žois Alcover, Feb 27 2018 *)

PROG

(PARI) {a(n) = if( n<1, n==0, 4 * numdiv(n))} /* Michael Somos, Jul 04 2011 */

CROSSREFS

Cf. A000005, A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).

Sequence in context: A141284 A272812 A273207 * A072541 A141719 A098352

Adjacent sequences:  A145151 A145152 A145153 * A145155 A145156 A145157

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 16:22 EDT 2021. Contains 343050 sequences. (Running on oeis4.)