login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145142 Triangle T(n,k), n>=1, 0<=k<=n-1, read by rows: T(n,k)/(n-1)! is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153. 18
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 24, 6, 11, 6, 1, 120, 144, 50, 35, 10, 1, 720, 1200, 634, 225, 85, 15, 1, 5040, 9960, 6804, 2464, 735, 175, 21, 1, 80640, 89040, 71868, 29932, 8449, 1960, 322, 28, 1, 1088640, 1231776, 789984, 375164, 112644, 25473, 4536, 546, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Alois P. Heinz, Rows n = 1..45, flattened

FORMULA

See program.

EXAMPLE

Triangle begins:

    1;

    0,   1;

    0,   1,   1;

    0,   2,   3,   1;

   24,   6,  11,   6,   1;

  120, 144,  50,  35,  10,  1;

MAPLE

row:= proc(n) option remember; local f, i, x; f:= unapply(simplify(sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); unapply(subs(solve({seq(f(i+1)= coeftayl(x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq(cat(a||i), i=0..n-1)}), sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); end: T:= (n, k)-> `if`(k<0 or k>=n, 0, coeff(row(n)(x), x, k)*(n-1)!): seq(seq(T(n, k), k=0..n-1), n=1..12);

MATHEMATICA

row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n]*(n-1)!, {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 04 2014, after Alois P. Heinz *)

CROSSREFS

T(n,k)/(n-1)! gives: A145140 / A145141.

Columns 0-9 give: A052581, A145143, A145144, A145145, A145146, A145147, A145148, A145149, A145150.

Diagonal and lower diagonals 1-3 give: A000012, A000217, A000914, A001303.

Cf. A145153, A001477, A000292, A145126, A145127, A145128, A145129, A145130.

Row sums are in A052593.

Sequence in context: A193683 A145643 A323155 * A137738 A009108 A016537

Adjacent sequences:  A145139 A145140 A145141 * A145143 A145144 A145145

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Oct 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)