login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145142 Triangle T(n,k), n>=1, 0<=k<=n-1, read by rows: T(n,k)/(n-1)! is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153. 18
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 24, 6, 11, 6, 1, 120, 144, 50, 35, 10, 1, 720, 1200, 634, 225, 85, 15, 1, 5040, 9960, 6804, 2464, 735, 175, 21, 1, 80640, 89040, 71868, 29932, 8449, 1960, 322, 28, 1, 1088640, 1231776, 789984, 375164, 112644, 25473, 4536, 546, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Alois P. Heinz, Rows n = 1..45, flattened

FORMULA

See program.

EXAMPLE

Triangle begins:

1;

0,     1;

0,     1,   1;

0,     2,   3,   1;

24,    6,  11,   6,   1;

120, 144,  50,  35,  10,  1;

MAPLE

row:= proc(n) option remember; local f, i, x; f:= unapply(simplify(sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); unapply(subs(solve({seq(f(i+1)= coeftayl(x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq(cat(a||i), i=0..n-1)}), sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); end: T:= (n, k)-> `if`(k<0 or k>=n, 0, coeff(row(n)(x), x, k)*(n-1)!): seq(seq(T(n, k), k=0..n-1), n=1..12);

MATHEMATICA

row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n]*(n-1)!, {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Feb 04 2014, after Alois P. Heinz *)

CROSSREFS

T(n,k)/(n-1)! gives: A145140 / A145141.

Columns 0-9 give: A052581, A145143, A145144, A145145, A145146, A145147, A145148, A145149, A145150.

Diagonal and lower diagonals 1-3 give: A000012, A000217, A000914, A001303.

Cf. A145153, A001477, A000292, A145126, A145127, A145128, A145129, A145130.

Row sums are in A052593.

Sequence in context: A030780 A193683 A145643 * A137738 A009108 A016537

Adjacent sequences:  A145139 A145140 A145141 * A145143 A145144 A145145

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Oct 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 18:10 EDT 2017. Contains 289671 sequences.