login
A144402
Triangle in A144385 read downwards by columns.
3
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 0, 7, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 0, 175, 315, 140, 21, 1, 0, 0, 0, 280, 1225, 980, 266, 28, 1, 0, 0, 0, 280, 3780, 5565, 2520, 462, 36, 1, 0, 0, 0, 0, 9100, 26145, 19425, 5670, 750, 45, 1, 0, 0, 0, 0, 15400
OFFSET
0,9
COMMENTS
The Bell transform of the sequence "g(n) = 1 if n<3 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
LINKS
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 12;
M = BellMatrix[If[#<3, 1, 0]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
PROG
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<3 else 0, 12) # Peter Luschny, Jan 19 2016
CROSSREFS
Cf. A111246.
Sequence in context: A091925 A369199 A034370 * A264429 A324163 A127537
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved