login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091925 Decimal expansion of Pi^3. 23
3, 1, 0, 0, 6, 2, 7, 6, 6, 8, 0, 2, 9, 9, 8, 2, 0, 1, 7, 5, 4, 7, 6, 3, 1, 5, 0, 6, 7, 1, 0, 1, 3, 9, 5, 2, 0, 2, 2, 2, 5, 2, 8, 8, 5, 6, 5, 8, 8, 5, 1, 0, 7, 6, 9, 4, 1, 4, 4, 5, 3, 8, 1, 0, 3, 8, 0, 6, 3, 9, 4, 9, 1, 7, 4, 6, 5, 7, 0, 6, 0, 3, 7, 5, 6, 6, 7, 0, 1, 0, 3, 2, 6, 0, 2, 8, 8, 6, 1, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Surface area of the 6-dimensional unit sphere. - Stanislav Sykora, Nov 08 2013

Surface area of a sphere of diameter Pi equals the volume of the circumscribed cube. - Omar E. Pol, Dec 25 2013

Area of a circle of radius Pi. - Omar E. Pol, Jan 31 2016

LINKS

Harry J. Smith, Table of n, a(n) for n = 2..20000

G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 31

Khodabakhsh Hessami Pilehrood, Tatiana Hessami Pilehrood, Series acceleration formulas for beta values, Discrete Mathematics & Theoretical Computer Science 12:2 (2010), pp. 223-236.

S. Sykora, Surface Integrals over n-Dimensional Spheres

FORMULA

Sum_{k >= 0} binomial(2*k,k)/((2*k + 1)^3*16^k) = 7*Pi^3/216. (Kh. Hessami Pilehrood and T. Hessami Pilehrood).

From Peter Bala, Feb 05 2015: (Start)

The integer sequences A(n) := 2^n*(2*n + 1)!^3/n!^2 and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)^3*(1/16)^k ) both satisfy the second order recurrence equation u(n) = (160*n^4 + 128*n^3 + 144*n^2 + 2)*u(n-1) - 32*(n - 1)*(2*n - 1)^7*u(n-2). From this observation we can obtain the continued fraction expansion 7/216*Pi^3 = 1 + 2/(432 - 32*3^7/(4162 - 32*2*5^7/(17714 - ... - 32*(n - 1)*(2*n - 1)^7/((160*n^4 + 128*n^3 + 144*n^2 + 2) - ... )))). Cf. A002388, A019670 and A093954. (End)

EXAMPLE

31.00627668029982017547631506710139520222528856588510769414453810380639...

MATHEMATICA

First@ RealDigits@ N[Pi^3, 120] (* Michael De Vlieger, Jan 31 2016 *)

PROG

(PARI) default(realprecision, 20080); x=Pi^3/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b091925.txt", n, " ", d)); \\ Harry J. Smith, Jun 22 2009

CROSSREFS

Cf. A000796, A002388, A058285 (continued fraction), A019670, A093954.

Sequence in context: A115090 A112295 A110517 * A034370 A144402 A264429

Adjacent sequences:  A091922 A091923 A091924 * A091926 A091927 A091928

KEYWORD

easy,nonn,cons

AUTHOR

Mohammad K. Azarian, Mar 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 24 18:18 EDT 2017. Contains 286997 sequences.