This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141174 Duplicate of A007519. 8
 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1289, 1297, 1321 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Originally "Primes of the form x^2 + 4xy - 4y^2 (as well as of the form x^2 + 6xy + y^2)." R. J. Mathar was the first to wonder whether these are also primes of the form 8k + 1. I did the easy part, proving that all primes of the form x^2 + 4xy - 4y^2 are congruent to 1 mod 8. Since x^2 + 4xy - 4y^2 = 2 or -2 is impossible, x must be odd. And since x is odd, x^2 = 1 mod 8. If y is even, then both 4xy and 4y^2 are multiples of 8. If y is odd, then 4xy = 4 mod 8, but so is 4y^2, cancelling out the effect and leaving x^2 = 1 mod 8. It remains to prove that every prime of the form 8k + 1 has a representation as x^2 + 4xy - 4y^2. - Alonso del Arte, Jan 28 2017 A necessary and sufficient condition of representation of p = 8n + 1 in your quadratic form is {8y^2 + 8n + 1 is perfect square}, since only in this case solving square equation for x, we have x = -2y + sqrt(8y^2 + 8n + 1) is [an] integer. For this a sufficient condition is { n has a form n = k^2 - k + i(4k + i - 1)/2, i >= 0, k >= 1}. In this case  x = 2i + 2k - 1. y = k." - Vladimir Shevelev, Jan 26 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 CROSSREFS Sequence in context: A263012 A172280 A004625 * A007519 A163185 A138005 Adjacent sequences:  A141171 A141172 A141173 * A141175 A141176 A141177 KEYWORD nonn,dead AUTHOR Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008 EXTENSIONS More terms from Michel Marcus, Feb 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 23:49 EST 2018. Contains 318191 sequences. (Running on oeis4.)