login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141171 Primes of the form -x^2+4*x*y+2*y^2 (as well as of the form 5*x^2+8*x*y+2*y^2). 7
2, 5, 23, 29, 47, 53, 71, 101, 149, 167, 173, 191, 197, 239, 263, 269, 293, 311, 317, 359, 383, 389, 431, 461, 479, 503, 509, 557, 599, 647, 653, 677, 701, 719, 743, 773, 797, 821, 839, 863, 887, 911, 941, 983, 1013, 1031, 1061, 1103, 1109, 1151, 1181, 1223, 1229, 1277, 1301, 1319, 1367 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Discriminant is 24. Class is 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.

Also primes of form 6*u^2 - v^2. The transformation {u, v} = {y, x - 2*y} yields the form in the title. - Juan Arias-de-Reyna, Mar 19 2011

Members of A141171 but not of A105880: 2, 431, 911, 1013, 1181, ..., . - Robert G. Wilson v, Aug 30 2013

This is also the list of primes p such that p = 2 or p is congruent to 5 or 23 mod 24 - Jean-François Alcover, Oct 28 2016

REFERENCES

Z. I. Borevich and I. R. Shafarevich, Number Theory.

D. B. Zagier, Zetafunktionen und quadratische Körper.

LINKS

Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

EXAMPLE

a(4) = 29 because we can write 29 = -1^2 + 4*1*3 + 2*3^2 (or 29 = 5*1^2 + 8*1*2 + 2*2^2).

MAPLE

N:= 10^5: # to get all terms <= N

select(t -> isprime(t) and [isolve(6*u^2-v^2=t)]<>[], [2, seq(op([24*i+5, 24*i+23]), i=0..floor((N-5)/24))]); # Robert Israel, Sep 28 2014

MATHEMATICA

A141171 = {}; Do[p = -x^2 + 4 * x * y + 2 * y^2; If[p > 0 && PrimeQ@ p, AppendTo[A141171, p]], {x, 25}, {y, 25}]; Take[ Union@ A141171, 57] (* Robert G. Wilson v, Aug 30 2013 *)

Select[Prime[Range[250]], # == 2 || MatchQ[Mod[#, 24], 5|23]&] (* Jean-François Alcover, Oct 28 2016 *)

CROSSREFS

Cf. A141170 (d = 24), A105880 (Primes for which -8 is a primitive root.) A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).

Cf. also A242665.

For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Sequence in context: A070281 A198444 A019368 * A180535 A038919 A141181

Adjacent sequences:  A141168 A141169 A141170 * A141172 A141173 A141174

KEYWORD

nonn

AUTHOR

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 07:00 EDT 2019. Contains 324183 sequences. (Running on oeis4.)