login
A172280
Primes p with the property that no divisor of p-1 is a primitive root modulo p.
1
17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 251, 257, 281, 307, 313, 337, 353, 401, 409, 433, 439, 449, 457, 499, 521, 569, 577, 593, 601, 617, 641, 643, 673, 727, 761, 769, 809, 857, 881, 919, 929, 937, 953, 977, 997, 1009, 1013, 1033, 1049, 1097, 1129, 1153
OFFSET
1,1
COMMENTS
The sequence is probably infinite.
No element of A001122 nor of A172058 can be in this list.
LINKS
MATHEMATICA
m = 2; t = {}; While[m < bound, m = m + 1; p = Prime[m]; dp = Divisors[p - 1]; L = Length[dp]; j = 1; While[j < L - 1, j = j + 1; b = MultiplicativeOrder[dp[[j]], p]; If[b == p - 1, j = L + 1, ] ]; If[j == L + 1, , t = {t, p}] ]; t = Flatten[t]
CROSSREFS
Sequence in context: A332227 A263011 A263012 * A004625 A141174 A007519
KEYWORD
easy,nonn
AUTHOR
Emmanuel Vantieghem, Jan 30 2010
STATUS
approved