login
A140880
Triangle read by rows, T(n,k) = Gamma(n+3)/(Gamma(k+1)*Gamma(n-k+1)) for n>=0 and 0<=k<=n.
0
2, 6, 6, 12, 24, 12, 20, 60, 60, 20, 30, 120, 180, 120, 30, 42, 210, 420, 420, 210, 42, 56, 336, 840, 1120, 840, 336, 56, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90
OFFSET
0,1
EXAMPLE
Triangle starts:
[0] 2
[1] 6, 6
[2] 12, 24, 12
[3] 20, 60, 60, 20
[4] 30, 120, 180, 120, 30
[5] 42, 210, 420, 420, 210, 42
[6] 56, 336, 840, 1120, 840, 336, 56
[7] 72, 504, 1512, 2520, 2520, 1512, 504, 72
[8] 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90
MAPLE
T := (n, k) -> GAMMA(n+3)/(GAMMA(k+1)*GAMMA(n-k+1)):
seq(seq(T(n, k), k=0..n), n=0..8); # Peter Luschny, Oct 29 2017
MATHEMATICA
Flatten[Table[Gamma[n+3]/(Gamma[k+1]Gamma[n-k+1]), {n, 0, 8}, {k, 0, n}]]
CROSSREFS
T(n,0) = T(n,n) = A002378(n+1). T(n,k) = 2*A094305(n,k).
Row sums are A001815(n+2).
Cf. A007318.
Sequence in context: A253215 A075779 A241301 * A065420 A119312 A309415
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited and new name from Peter Luschny, Oct 29 2017
STATUS
approved