OFFSET
0,5
COMMENTS
a(0) = 1 because 0! = 1 has one permutation (1).
a(4) = 2 because 4! = 24 has two permutations (24, 42).
a(5) = 6 because 5! = 120 has 6 permutations (012, 021, 102, 120, 201, 210).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..460
MAPLE
a:= n-> (l-> combinat[multinomial](add(i, i=l), l[])
)([coeffs(add(x^i, i=convert(n!, base, 10)))]):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 30 2019
MATHEMATICA
a[n_] := Block[{w = IntegerDigits[n!]}, Length[w]! / Times @@ ((Last /@ Tally[w])!)]; Array[a, 26, 0] (* Giovanni Resta, Jul 30 2019 *)
PROG
(Haskell)
import Data.List (permutations, nub)
factorial n = product [1..n]
a309415 n = length $ nub $ permutations $ show $ factorial n
map a309415 [0..]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hauke Löffler, Jul 30 2019
EXTENSIONS
More terms from Giovanni Resta, Jul 30 2019
STATUS
approved