login
A075779
Triangle T(n,k) = f(n,k,n-1), n >= 2, 1 <= k <= n-1, where f is given below.
4
2, 6, 6, 12, 16, 12, 20, 35, 35, 20, 30, 66, 84, 66, 30, 42, 112, 175, 175, 112, 42, 56, 176, 328, 400, 328, 176, 56, 72, 261, 567, 819, 819, 567, 261, 72, 90, 370, 920, 1540, 1820, 1540, 920, 370, 90, 110, 506, 1419, 2706, 3696, 3696, 2706, 1419, 506, 110, 132, 672
OFFSET
2,1
COMMENTS
Row sums give sequence A033484(n)*(n+2). Essentially same triangle as A051597(n,k)*(n+2). - Philippe Deléham, Oct 01 2003
FORMULA
f(n, p, k) = binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1).
EXAMPLE
2; 6,6; 12,16,12; 20,35,35,20; ...
MAPLE
f := proc(n, p, k) convert( binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1), `StandardFunctions`); end;
MATHEMATICA
t[n_, k_] := n*HypergeometricPFQ[{-k, 2-n, k-n}, {1, 1-n}, 1]; Table[t[n, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
CROSSREFS
Cf. A014410 and A007318 for f(n, k, n), A075779 and A075798 for f(n, k, n-1) and A075780 and A075837 for f(n, k, n-2).
Sequence in context: A064797 A053319 A253215 * A241301 A140880 A065420
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 17 2002
STATUS
approved