login
A137794
Characteristic function of numbers having no prime gaps in their factorization.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
1,1
FORMULA
a(n) = 0^A073490(n).
a(A073491(n)) = 1; a(A073492(n)) = 0;
a(n) = A137721(n) - A137721(n-1) for n>1.
MATHEMATICA
a[n_] := With[{pp = PrimePi @ FactorInteger[n][[All, 1]]},
Boole[pp[[-1]] - pp[[1]] + 1 == Length[pp]]];
Array[a, 105] (* Jean-François Alcover, Dec 09 2021 *)
PROG
(PARI) A137794(n) = if(1>=omega(n), 1, my(pis=apply(primepi, factor(n)[, 1])); for(k=2, #pis, if(pis[k]>(1+pis[k-1]), return(0))); (1)); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
Cf. A137721 (partial sums).
Sequence in context: A368992 A334465 A054527 * A357731 A336546 A209929
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 11 2008
STATUS
approved