login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137796 Prime numbers p such that p + 12 and p - 12 are primes. 6
17, 19, 29, 31, 41, 59, 71, 101, 139, 151, 179, 211, 239, 251, 269, 281, 409, 421, 431, 479, 491, 619, 631, 739, 809, 941, 1009, 1021, 1051, 1289, 1291, 1439, 1459, 1471, 1499, 1511, 1571, 1609, 1709, 1721, 1789, 1889, 1901, 1999, 2099, 2141, 2281, 2411 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Solutions of the equation (n-12)' + n' + (n+12)' = 3, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 08 2012

LINKS

Daniel Starodubtsev, Table of n, a(n) for n = 1..10000

FORMULA

A092216 INTERSECT A046133. - R. J. Mathar, May 03 2008

EXAMPLE

17 + 12 = 29 (a prime), 17 - 12 = 5 (a prime);

19 + 12 = 31 (a prime), 19 - 12 = 7 (a prime).

MAPLE

isA092216 := proc(n) RETURN(isprime(n) and isprime(n-12) ) ; end: isA046133 := proc(n) RETURN(isprime(n) and isprime(n+12) ) ; end: isA137796 := proc(n) RETURN(isA092216(n) and isA046133(n)) ; end: for i from 1 to 400 do if isA137796(ithprime(i)) then printf("%d, ", ithprime(i)) ; fi ; od: # R. J. Mathar, May 03 2008

MATHEMATICA

a=12; Select[Table[Prime[n], {n, 10^3}], PrimeQ[ #-a] && PrimeQ[ #+a] &]

PROG

(PARI) lista(nn) = forprime(p=2, nn, if (isprime(p-12) && isprime(p+12), print1(p, ", "))); \\ Michel Marcus, Oct 04 2015

CROSSREFS

Cf. A092216, A046133. Note that this is different from A137873.

Sequence in context: A176462 A060254 A190792 * A125213 A132246 A038969

Adjacent sequences:  A137793 A137794 A137795 * A137797 A137798 A137799

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Apr 28 2008

EXTENSIONS

Corrected and extended by R. J. Mathar, May 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 03:40 EDT 2020. Contains 337264 sequences. (Running on oeis4.)