This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054527 Triangle read by rows: T(n,k) = Moebius mu(k) (n >= 1, 1<=k<=n). 2
 1, 1, -1, 1, -1, -1, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, -1, -1, 0, -1, 1, 1, -1, -1, 0, -1, 1, -1, 1, -1, -1, 0, -1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, -1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums = Mertens sequence = A002321; right border = mu(n) = A008683. - Gary W. Adamson, Jan 17 2007 M * Q as infinite lower triangular matrices; M = (1; 1, 1; 1, 1, 1;...); Q = mu(n) in the main diagonal and the rest zeros. - Gary W. Adamson, Jan 17 2007 Terms in rows of this table appears to be the values of the minors in the first expansion of the determinant of the Redheffer matrix. [From Mats Granvik, Aug 24 2008] LINKS Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened EXAMPLE First few rows of the triangle are; 1; 1, -1; 1, -1, -1; 1, -1, -1, 0; 1, -1, -1, 0, -1; 1, -1, -1, 0, -1, 1; ... PROG (Haskell) import Data.List (inits) a054527 n k = a054527_tabl !! (n-1) !! (k-1) a054527_row n = a054527_tabl !! (n-1) a054527_tabl = tail \$ inits a008683_list -- Reinhard Zumkeller, Sep 03 2015 CROSSREFS Cf. A008683, A002321, A054521. Sequence in context: A110242 A273592 A279693 * A137794 A209929 A105586 Adjacent sequences:  A054524 A054525 A054526 * A054528 A054529 A054530 KEYWORD sign,tabl AUTHOR N. J. A. Sloane, Apr 09 2000 EXTENSIONS Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 02:03 EDT 2019. Contains 328335 sequences. (Running on oeis4.)