login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137422 Triangle T(n,k) = A053120(n-1,k) + A053120(n-1,k-1), read by rows. 1
0, 1, 1, 0, 1, 1, -1, -1, 2, 2, 0, -3, -3, 4, 4, 1, 1, -8, -8, 8, 8, 0, 5, 5, -20, -20, 16, 16, -1, -1, 18, 18, -48, -48, 32, 32, 0, -7, -7, 56, 56, -112, -112, 64, 64, 1, 1, -32, -32, 160, 160, -256, -256, 128, 128, 0, 9, 9, -120, -120, 432, 432, -576, -576, 256, 256 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Row sums are 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...

LINKS

Table of n, a(n) for n=0..65.

EXAMPLE

0;

1, 1;

0, 1, 1;

-1, -1, 2, 2;

0, -3, -3, 4, 4;

1, 1, -8, -8, 8, 8;

0, 5, 5, -20, -20, 16, 16;

-1, -1, 18, 18, -48, -48, 32,32;

0, -7, -7, 56, 56, -112, -112, 64, 64;

1,1, -32, -32, 160, 160, -256, -256, 128, 128;

0, 9, 9, -120, -120, 432, 432, -576, -576, 256, 256;

MAPLE

A053120 := proc(n, k)

    if n <0 or k <0 then

        0 ;

    else

        T(n, x) ;

        coeftayl(%, x=0, k) ;

    end if;

end proc:

A137422 := proc(n, k)

    A053120(n-1, k)+A053120(n-1, k-1)

end proc: # R. J. Mathar, Sep 10 2013

MATHEMATICA

(* Chebyshev A053120 polynomials*) (* Recursive root shifted polynomials*) Q[x, 0] = 1; Q[x, 1] = x + 1; Q[x_, n_] := (x + 1)*ChebyshevT[n - 1, x]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a0 = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a0]

CROSSREFS

Cf. A053120.

Sequence in context: A216673 A207383 A191362 * A139139 A077872 A300453

Adjacent sequences:  A137419 A137420 A137421 * A137423 A137424 A137425

KEYWORD

tabl,sign

AUTHOR

Roger L. Bagula and Gary W. Adamson, Apr 16 2008

EXTENSIONS

T(0,0) set to a rationalized 0. - R. J. Mathar, Sep 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)