login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139139 Expansion of (phi(q) / phi(q^3) - 1) / 2 in powers of q where phi() is a Ramanujan theta function. 2
1, 0, -1, -1, 0, 2, 2, 0, -3, -4, 0, 5, 6, 0, -8, -9, 0, 12, 14, 0, -18, -20, 0, 26, 29, 0, -37, -42, 0, 52, 58, 0, -72, -80, 0, 99, 110, 0, -134, -148, 0, 180, 198, 0, -240, -264, 0, 317, 347, 0, -416, -454, 0, 542, 592, 0, -702, -764, 0, 904, 982, 0, -1158 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Table of n, a(n) for n=1..63.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q * f(-q, -q^11) / f(-q, q^2) in powers of q where f(, ) is the Ramanujan general theta function. - Michael Somos, Sep 07 2015

Expansion of q * chi(-q^2) * psi(q^6)^2 / (psi(q^3) * f(-q^5, -q^7)) in powers of q where phi(), f() are Ramanujan theta functions.

Euler transform of period 12 sequence [ 0, -1, -1, 0, 1, 2, 1, 0, -1, -1, 0, 0, ...].

G.f.: ((Sum_{k in Z} x^k^2) / (Sum_{k in Z} x^(3*k^2)) - 1) / 2.

G.f.: Product_{k>0} (1 + x^(2*k))^2 * (1 - x^(2*k) + x^(4*k))^3 / ( (1 + x^k) * (1 - x^k + x^(2*k)) * (1 - x^(12*k - 5)) * (1 - x^(12*k - 7))).

2 * a(n) = A139137(n) unless n=0. a(3*n + 2) = 0.

a(3*n + 1) = A139135(n). - Michael Somos, Sep 07 2015

EXAMPLE

G.f. = q - q^3 - q^4 + 2*q^6 + 2*q^7 - 3*q^9 - 4*q^10 + 5*q^12 + 6*q^13 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3] - 1) / 2, {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^5) - 1) / 2, n))};

CROSSREFS

Cf. A139135, A139137.

Sequence in context: A207383 A191362 A137422 * A077872 A239292 A262879

Adjacent sequences:  A139136 A139137 A139138 * A139140 A139141 A139142

KEYWORD

sign

AUTHOR

Michael Somos, Apr 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 02:07 EST 2016. Contains 278902 sequences.