login
A135298
a(n) = the total number of permutations (m(1),m(2),m(3)...m(j)) of (1,2,3,...,j) where n = 1*m(1) + 2*m(2) + 3*m(3) + ...+j*m(j), where j is over all positive integers.
3
1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 1, 3, 1, 4, 2, 2, 2, 4, 1, 3, 1, 0, 0, 0, 0, 1, 4, 3, 6, 7, 6, 4, 10, 6, 10, 6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1, 1, 5, 6, 9, 16, 12, 14, 24, 20, 21, 23, 28, 24, 34, 20, 32, 42, 29, 29, 42, 32, 20, 34, 24, 28, 23, 21, 20, 25, 20, 22, 30, 38
OFFSET
0,12
COMMENTS
Does every integer greater than some positive integer N have at least one such representation?
a(n) > 0 for n > 34, a(n) > 1 for n > 56. - Alois P. Heinz, Aug 28 2014
LINKS
J. Sack and H. Úlfarsson, Refined inversion statistics on permutations, arXiv preprint arXiv:1106.1995 [math.CO], 2011-2012.
EXAMPLE
21 has a(21)=3 such representations: 21 = 1*4 + 2*3 + 3*1 + 4*2 = 1*4 + 2*2 + 3*3 + 4*1 = 1*3 + 2*4 + 3*2 + 4*1.
Not all representations of an integer n need to necessarily have the same j. For example, 91 = 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 (j=6). And 91 also equals 1*7 + 2*4 + 3*5 + 4*3 + 5*6 + 6*2 + 7*1 (j=7).
1 = 1*1;
4 = 1*2+2*1;
5 = 1*1+2*2;
10 = 1*3+2*2+3*1;
11 = 1*2+2*3+3*1;
11 = 1*3+2*1+3*2;
13 = 1*1+2*3+3*2;
13 = 1*2+2*1+3*3;
14 = 1*1+2*2+3*3;
20 = 1*4+2*3+3*2+4*1;
21 = 1*3+2*4+3*2+4*1;
21 = 1*4+2*2+3*3+4*1;
21 = 1*4+2*3+3*1+4*2;
22 = 1*3+2*4+3*1+4*2;
23 = 1*2+2*4+3*3+4*1;
23 = 1*3+2*2+3*4+4*1;
23 = 1*4+2*1+3*3+4*2;
23 = 1*4+2*2+3*1+4*3;
24 = 1*2+2*3+3*4+4*1;
24 = 1*4+2*1+3*2+4*3;
25 = 1*2+2*4+3*1+4*3;
25 = 1*3+2*1+3*4+4*2;
26 = 1*1+2*4+3*3+4*2;
26 = 1*3+2*2+3*1+4*4;
27 = 1*1+2*3+3*4+4*2;
27 = 1*1+2*4+3*2+4*3;
27 = 1*2+2*3+3*1+4*4;
27 = 1*3+2*1+3*2+4*4;
28 = 1*2+2*1+3*4+4*3;
29 = 1*1+2*2+3*4+4*3;
29 = 1*1+2*3+3*2+4*4;
29 = 1*2+2*1+3*3+4*4;
30 = 1*1+2*2+3*3+4*4;
MAPLE
A135298rec := proc(j, n, notm) local a, m ; a := 0 ; if n = 0 then if max( seq(e, e=notm) ) >= j then RETURN(0) ; else RETURN(1) ; fi ; end: for m from 1 do if n-j*m < 0 then break ; elif not m in notm then a := a+A135298rec(j+1, n-j*m, [op(notm), m] ) ; fi ; od: RETURN(a) ; end: A135298 := proc(n) A135298rec(1, n, []) ; end: for n from 1 to 140 do printf("%d, ", A135298(n)) ; od: # R. J. Mathar, Jan 30 2008
# second Maple program:
n:= 8 : # gives binomial(n+3, 3) terms
with(combinat):
(p-> seq(coeff(p, x, j), j=0..binomial(n+3, 3)-1))
(add(add(x^add(i*l[i], i=1..h), l=permute(h)), h=0..n));
# Alois P. Heinz, Aug 29 2014
MATHEMATICA
n = 8; (* gives binomial(n+3, 3)-1 terms *) Function[p, Table[ Coefficient[p, x, j], {j, 1, Binomial[n+3, 3]-1}]] @ Sum[x^(l.Range[h]), {h, 1, n}, {l, Permutations @ Range[h]}] (* Jean-François Alcover, Jul 22 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Leroy Quet, Dec 04 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 30 2008
a(0)=1 prepended by Alois P. Heinz, Nov 23 2023
STATUS
approved