login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006996 C(2n,n) mod 3.
(Formerly M0021)
9
1, 2, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Removing 0's from the sequence gives Thue-Morse sequence A001285 : 1,2,0,2,1,0,0,0,0,2,1,0,1,2,..->1,2,2,1,2,1,1,2,... - Benoit Cloitre, Jan 04 2004

a(n) = 0 if n in A074940, a(n) = 1 if n in A074939, a(n) = 2 if n in A074938.

Central terms of the triangle in A083093. - Reinhard Zumkeller, Jul 11 2013

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..2187=3^7

Michael Gilleland, Some Self-Similar Integer Sequences

Index entries for sequences that are fixed points of mappings

FORMULA

a(n)=A005704(n) mod 3. - Benoit Cloitre, Jan 04 2004

A fixed point of the morphism : 1 -> 120, 2 -> 210, 0 -> 000. - Philippe Deléham, Jan 08 2004

MATHEMATICA

Table[ Mod[ Binomial[2n, n], 3], {n, 0, 104}] (* Or *)

Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 0, 0}, 1 -> {1, 2, 0}, 2 -> {2, 1, 0}})]}], {1}, 7] (* Robert G. Wilson v, Mar 28 2005 *)

PROG

(Haskell)

a006996 n = a083093 (2 * n) n  -- Reinhard Zumkeller, Jul 11 2013

(PARI) a(n)=if(n==0, return(1)); if(vecmax(Set(digits(n, 3)))>1, 0, 1 + n%2) \\ Charles R Greathouse IV, May 09 2016

CROSSREFS

Sequence in context: A056615 A060989 A135298 * A321430 A262774 A112604

Adjacent sequences:  A006993 A006994 A006995 * A006997 A006998 A006999

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, James Propp

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 03:50 EDT 2019. Contains 321450 sequences. (Running on oeis4.)