login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005704 Number of partitions of 3n into powers of 3.
(Formerly M0639)
18
1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 28, 33, 40, 47, 54, 63, 72, 81, 93, 105, 117, 132, 147, 162, 180, 198, 216, 239, 262, 285, 313, 341, 369, 402, 435, 468, 508, 548, 588, 635, 682, 729, 783, 837, 891, 954, 1017, 1080, 1152, 1224, 1296, 1377, 1458, 1539, 1632 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Infinite convolution product of [1,2,3,3,3,3,3,3,3,3] aerated A000244 - 1 times, i.e., [1,2,3,3,3,3,3,3,3,3] * [1,0,0,2,0,0,3,0,0,3] * [1,0,0,0,0,0,0,0,0,2] * ... [Mats Granvik, Gary W. Adamson, Aug 07 2009]

REFERENCES

R. K. Guy, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

G. E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory 3 (1971), 104-110.

G. E. Andrews and J. A. Sellers, Characterizing the number of p-ary partitions modulo a prime p, p. 2.

C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, 2012. - From N. J. A. Sloane, Dec 23 2012

R. K. Guy, Letters to N. J. A. Sloane and J. W. Moon, 1988

M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions, Australasian J. Combin., 30 (2004), 193-196.

M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions

D. Krenn, D. Ralaivaosaona, S. Wagner, The Number of Multi-Base Representations of an Integer, 2014.

D. Krenn, D. Ralaivaosaona, S. Wagner, Multi-Base Representations of Integers: Asymptotic Enumeration and Central Limit Theorems, arXiv preprint arXiv:1503.08594 [math.NT], 2015.

M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228.

M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228. [Cached copy, with permission]

O. J. Rodseth, Some arithmetical properties of m-ary partitions, Proc. Camb. Phil. Soc. 68 (1970), 447-453.

O. J. Rodseth and J. A. Sellers, On m-ary partition function congruences: A fresh look at a past problem, J. Number Theory 87 (2001), 270-281.

O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.

FORMULA

a(n) = a(n-1)+a(floor(n/3)).

Coefficient of x^(3*n) in prod(k>=0, 1/(1-x^(3^k))). Also, coefficient of x^n in prod(k>=0, 1/(1-x^(3^k)))/(1-x). - Benoit Cloitre, Nov 28 2002

a(n) mod 3 = binomial(2n, n) mod 3. - Benoit Cloitre, Jan 04 2004

Let T(x) be the g.f., then T(x)=(1-x^3)/(1-x)^2*T(x^3). [Joerg Arndt, May 12 2010]

MATHEMATICA

Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1, #1}]], #2]]] &, {1}, Range[2, 55]] (* Birkas Gyorgy, Apr 18 2011 *)

a[n_] := a[n] = If[n <= 2, n + 1, a[n - 1] + a[Floor[n/3]]]; Array[a, 101, 0] (* T. D. Noe, Apr 18 2011 *)

CROSSREFS

Cf. A000041, A000123, A005705, A005706, A018819.

Cf. A006996.

Sequence in context: A117930 A090632 A022786 * A022782 A283968 A025692

Adjacent sequences:  A005701 A005702 A005703 * A005705 A005706 A005707

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Formula and more terms from Henry Bottomley, Apr 30 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 08:23 EDT 2018. Contains 315270 sequences. (Running on oeis4.)