This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134160 a(n) = 163 + 1053*n + 2520*n^2 + 2646*n^3 + 1029*n^4. 6
 163, 7411, 49981, 180793, 477463, 1042303, 2002321, 3509221, 5739403, 8893963, 13198693, 18904081, 26285311, 35642263, 47299513, 61606333, 78936691, 99689251, 124287373, 153179113, 186837223, 225759151, 270467041, 321507733 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A000540(n) is divisible by A000330(n) if and only n is congruent to {1,2,4,5} mod 7 (see A047380) A134158 is case when n is congruent to 1 mod 7 A134159 is case when n is congruent to 2 mod 7 A134160 is case when n is congruent to 4 mod 7 A134161 is case when n is congruent to 5 mod 7 A133180 is union of A134158 and A134159 and A134160 and A134161 LINKS Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = (3*(7*n + 4)^4 + 6*(7*n + 4)^3 - 3*(7*n + 4) + 1)/7. a(n) = sum(k=1..7*n+4, k^6) / sum(k=1..7*n+4, k^2). G.f.: (163+6596*x+14556*x^2+3368*x^3+13*x^4)/(1-x)^5. - Colin Barker, May 25 2012 MATHEMATICA Table[(3(7n + 4)^4 + 6(7n + 4)^3 - 3 (7n + 4) + 1)/7, {n, 0, 100}] (*Artur Jasinski*) Table[Sum[k^6, {k, 1, 7n + 4}]/Sum[k^2, {k, 1, 7n + 4}], {n, 0, 100}] (*Artur Jasinski*) PROG (PARI) a(n)=163+1053*n+2520*n^2+2646*n^3+1029*n^4 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A000330, A000540, A119617, A134153, A134154, A133180, A134158, A134159, A134161. Sequence in context: A232260 A027543 A222837 * A219127 A270203 A049498 Adjacent sequences:  A134157 A134158 A134159 * A134161 A134162 A134163 KEYWORD nonn,easy AUTHOR Artur Jasinski, Oct 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.