login
A134163
1 + 12*n + 81*n^3 + n*(105*n + 81*n^3)/2.
1
1, 187, 1531, 5977, 16441, 36811, 71947, 127681, 210817, 329131, 491371, 707257, 987481, 1343707, 1788571, 2335681, 2999617, 3795931, 4741147, 5852761, 7149241, 8650027, 10375531, 12347137, 14587201, 17119051, 19966987, 23156281, 26713177
OFFSET
0,2
COMMENTS
A000541(n) is divisible by A000537(n) if and only n is congruent to 1 mod 3 (see A016777).
FORMULA
a(n) = (3(3n + 1)^4 + 6(3n + 1)^3 - (3n + 1)^2 - 4 (3n + 1) + 2)/6.
a(n) = ( sum_{k=1..3n+1} k^7 ) / ( sum_{k=1..3n+1} k^3 ).
G.f.: (1+182*x+606*x^2+182*x^3+x^4)/(1-x)^5. - R. J. Mathar, Nov 14 2007
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Oct 23 2014
MAPLE
A134163:=n->1 + 12*n + 81*n^3 + n*(105*n + 81*n^3)/2: seq(A134163(n), n=0..30); # Wesley Ivan Hurt, Oct 23 2014
MATHEMATICA
Table[(3(3n + 1)^4 + 6(3n + 1)^3 - (3n + 1)^2 - 4 (3n + 1) + 2)/6, {n, 0, 100}] (* or *) Table[Sum[k^7, {k, 1, 3n + 1}]/Sum[k^3, {k, 1, 3n + 1}], {n, 0, 100}]
PROG
(Magma) [1 + 12*n + 81*n^3 + n*(105*n+ 81*n^3)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2011
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 10 2007
STATUS
approved