login
A133952
a(n) = the number of "isolated divisors" of n!. A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.
2
1, 0, 1, 4, 10, 19, 43, 77, 137, 243, 497, 749, 1520, 2518, 3952, 5294, 10628, 14564, 29199, 40855, 60605, 95786, 191700, 242580, 339732, 531896, 677048, 916946, 1834106, 2332346, 4664982, 5528982, 7863685, 12164443, 16422235, 19594843
OFFSET
1,4
LINKS
FORMULA
a(n) = A027423(n) - A133951(n) = A132881(A000142(n)).
MAPLE
A133952 := proc(n) local divs, k, i, a ; divs := sort(convert(numtheory[divisors](n!), list)) ; a := 0 ; for i from 1 to nops(divs) do k := op(i, divs) ; if not k-1 in divs and not k+1 in divs then a := a+1 ; fi ; od: RETURN(a) ; end: for n from 1 do printf("%d, ", A133952(n)) ; od: # R. J. Mathar, Oct 19 2007
CROSSREFS
Sequence in context: A097116 A155380 A155445 * A155348 A155269 A155322
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 30 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Oct 19 2007
a(26)-a(35) from Ray Chandler, May 28 2008
a(36)-a(50) from Ray Chandler, Jun 20 2008
STATUS
approved