

A133953


A second integer solution:d=2;h=1; A 4 X 4 vector Markov of a game matrix MA and an anti game matrix MB such that game_valueMa+game_ValueMB =0 and the score is the sum of the vector out put of the Markov: MA={{0,1},{1,d}}; MB={{1/h,0},(2  d + 1/h + h),h}}; Characteristic Polynomial is: 1 + 4 x^2  4 x^3 + x^4.


0



2, 6, 12, 24, 50, 110, 252, 592, 1410, 3382, 8140, 19624, 47346, 114270, 275836, 665888, 1607554, 3880934, 9369356, 22619576, 54608434, 131836366, 318281084, 768398448, 1855077890, 4478554134, 10812186060, 26102926152, 63018038258
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Using the general game value function: gv[M_] = Det[M]/Sum[Sum[M[[i, j]]*(1)^(i + j), {i, 1, 2}], {j, 1, 2}] and matrices: MA = {{a, b}, {c, d}}; MB = {{e, f}, {g, h}}; The solution of: Solve[{b == 1, f == 0, a == 0, Det[MA] + 1 == 0, Det[MB]  1 == 0, gv[MA] + gv[MB] == 0}, {c, d, e, g, h}] Gives the two Matrix solution: MA={{0,1},{1,d}}; MB={{1/h,0},{2d+1/h+h,h}}; Besides the Fibonacci:d=1 and h=1 the only other obvious integer solution is: d=2 and h=1.


LINKS

Table of n, a(n) for n=1..29.


FORMULA

d = 2; h = 1; M = {{0, 1, 0, 0}, {1,d, 0, 0}, {0, 0, 1/h, 0}, {0, 0, 2  d + 1/h + h, h}}; v[1] = {0, 1, 1, 0}; v[n_] := v[n] = M.v[n  1] a(n) = Sum[v(i),{i,1,4}].
G.f.: 2*x*(1+x)*(12*x)/((1x)^2*(12*xx^2)). [Colin Barker, Feb 28 2012]


MATHEMATICA

d = 2; h = 1; M = {{0, 1, 0, 0}, {1, d, 0, 0}, {0, 0, 1/h, 0}, {0, 0, 2  d + 1/h + h, h}}; v[1] = {0, 1, 1, 0}; v[n_] := v[n] = M.v[n  1] a = Table[Apply[Plus, v[n]], {n, 1, 50}]


CROSSREFS

Sequence in context: A309841 A132176 A197469 * A122863 A170935 A277173
Adjacent sequences: A133950 A133951 A133952 * A133954 A133955 A133956


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Jan 08 2008


STATUS

approved



