login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131383 Total digital sum of n: sum of the digital sums of n for all the bases 1 to n (a 'digital sumorial'). 5
1, 3, 6, 8, 13, 16, 23, 25, 30, 35, 46, 46, 59, 66, 75, 74, 91, 91, 110, 112, 125, 136, 159, 152, 169, 182, 195, 199, 228, 223, 254, 253, 274, 291, 316, 297, 334, 353, 378, 373, 414, 409, 452, 460, 475, 498, 545, 520, 557, 565, 598, 608, 661, 652, 693, 690 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sums of rows of the triangle in A138530. - Reinhard Zumkeller, Mar 26 2008

LINKS

Hieronymus Fischer, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Digit Sum

FORMULA

a(n) = n^2-sum{k>0, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.

a(n) = n^2-sum{2<=p<=n, (p-1)*sum{0<k<=log_p(n), floor(n/p^k)}}.

a(n) = n^2-A024916(n)+A006218(n)-sum{k>1, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.

a(n) = A004125(n)+A006218(n)-sum{k>1, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.

Asymptotic behavior: a(n) = (1-Pi^2/12)*n^2 + O(n*log(n)) = A004125(n) + A006218(n) + O(n*log(n)).

Lim a(n)/n^2 = 1 - Pi^2/12 for n-->oo.

G.f.: (1/(1-x))*(x(1+x)/(1-x)^2-sum{k>0,sum{j>1,(j-1)*x^(j^k)/(1-x^(j^k))}= }).

Also: (1/(1-x))*(x(1+x)/(1-x)^2-sum{m>1, sum{1<j,j|m, sum{k>0,j^(1/k) is integer, j^(1/k)-1}}*x^m}).

a(n) = n^2-sum{1<m<=n,sum{k>0,sum{1<j,j|m, (j^(1/k)-1)(floor(j^(1/k))-floor((j-1)^(1/k)))}}}.

Recurrence: a(n)=a(n-1)-b(n)+2n-1, where b(n)=sum{1<j,j|n, sum{1<=k<=log_2(j),fract(j^(1/k))=0, j^(1/k)-1}} and fract(x)=fractional part of x=x-floor(x).

a(n) = sum{1<=p<=n, ds_p(n)} where ds_p = digital sum base p.

a(n) = A043306(n) + n (that sequence ignores unary) = A014837(n) + n + 1 (that sequence ignores unary and base n in which n is "10"). - Alonso del Arte, Mar 26 2009

EXAMPLE

5 = 11111(base 1) = 101(base 2) = 12(base 3) = 11(base 4) = 10(base 5). Thus a(5) = ds_1(5)+ds_2(5)+ds_3(5)+ds_4(5)+ds_5(5) = 5+2+3+2+1 = 13.

MATHEMATICA

Table[n + Total@ Map[Total@ IntegerDigits[n, #] &, Range[2, n]], {n, 56}] (* Michael De Vlieger, Jan 03 2017 *)

PROG

(PARI) a(n)=sum(i=2, n+1, vecsum(digits(n, i))); \\ R. J. Cano, Jan 03 2017

CROSSREFS

Cf. A131384, A007953.

Sequence in context: A070881 A046669 A046670 * A219730 A139001 A090961

Adjacent sequences:  A131380 A131381 A131382 * A131384 A131385 A131386

KEYWORD

nonn,base

AUTHOR

Hieronymus Fischer, Jul 05 2007, Jul 15 2007, Jan 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 17:00 EDT 2018. Contains 313816 sequences. (Running on oeis4.)