This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046670 Partial sums of A006530. 9
 1, 3, 6, 8, 13, 16, 23, 25, 28, 33, 44, 47, 60, 67, 72, 74, 91, 94, 113, 118, 125, 136, 159, 162, 167, 180, 183, 190, 219, 224, 255, 257, 268, 285, 292, 295, 332, 351, 364, 369, 410, 417, 460, 471, 476, 499, 546, 549, 556, 561, 578, 591, 644, 647, 658, 665, 684 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES K. Alladi and P. Erdos. “On an Additive Arithmetic Function.” Pacific J. Math. 71: 2 (1977), 275-294. MR 0447086 (56 #5401). Handbook of Number Theory, D. S. Mitrinovic et al., Kluwer, Section IV.1. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 A. E. Brouwer, Two number theoretic sums, Stichting Mathematisch Centrum. Zuivere Wiskunde, Report ZW 19/74 (1974): 3 pages. [Cached copy, included with the permission of the author] FORMULA a(n) = Pi^2/12 * n^2/log n + O(n^2/log^2 n). [See Mitrinovic et al.] - Charles R Greathouse IV, Feb 19 2014 MATHEMATICA Accumulate[Prepend[Table[FactorInteger[n][[-1, 1]], {n, 2, 100}], 1]] (* Harvey P. Dale, Jun 11 2011 *) PROG (Haskell) a046670 n = a046670_list !! (n-1) a046670_list = scanl1 (+) a006530_list -- Reinhard Zumkeller, Jun 15 2013 (PARI) gpf(n)=if(n<4, n, n=factor(n)[, 1]; n[#n]) a(n)=sum(k=1, n, gpf(k)) \\ Charles R Greathouse IV, Feb 19 2014 CROSSREFS Cf. A046669, A104350. Sequence in context: A190493 A070881 A046669 * A131383 A219730 A139001 Adjacent sequences:  A046667 A046668 A046669 * A046671 A046672 A046673 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS More terms from James A. Sellers STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 19:41 EST 2018. Contains 318087 sequences. (Running on oeis4.)